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New Methods for Handling Singular Sample
Covariance Matrices

Gabriel H. Tucci and Ke Wang

Abstract— The estimation of a covariance matrix from an
insufficient amount of data is one of the most common problems
in fields as diverse as multivariate statistics, wireless communi-
cations, signal processing, biology, learning theory, and finance.
In a joint work of Marzetta, Tucci, and Simon, a new approach
to handle singular covariance matrices was suggested. The main
idea was to use dimensionality reduction in conjunction with an
average over the Stiefel manifold. In this paper, we continue with
this research and we consider some new approaches to handle this
problem. One of the methods is called the mean conjugate estima-
tor under Ewens measure and uses a randomization of the sample
covariance matrix over all the permutation matrices with respect
to the Ewens measure. The techniques used to attack this problem
are broad and run from random matrix theory to combinatorics.

Index Terms— Sample covariance matrix, random matrices,
Stiefel manifold, Haar measure, Ewens measure.

I. INTRODUCTION

THE estimation of a covariance matrix from an insufficient
amount of data is one of the most common problems in

fields as diverse as multivariate statistics, wireless communica-
tions, signal processing, biology, learning theory and finance.
For instance, the covariation between asset returns plays a
crucial role in modern finance. The covariance matrix and
its inverse are the key statistics in portfolio optimization and
risk management. Many recent financial innovations involve
complex derivatives, like exotic options written on the mini-
mum, maximum or difference of two assets, or some structured
financial products, such as CDOs. All of these innovations are
built upon, or in order to exploit, the correlation structure of
two or more assets. In the field of wireless communications,
covariance estimates allows us to compute the direction of
arrival (DOA), which is a critical task in smart antenna systems
since it enables accurate mobile location (see [30], [31]).
Another application is in the field of biology and involves the
interactions between proteins or genes in an organism and the
joint time evolution of their interactions (see [27] for instance).

Typically the covariance matrix of a multivariate random
variable is not known but has to be estimated from the
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data. Estimation of covariance matrices then deals with the
question of how to approximate the actual covariance matrix
on the basis of samples from the multivariate distribution.
Simple cases, where the number of observations is much
greater than the number of variables, can be dealt with by
using the sample covariance matrix. In this case, the sample
covariance matrix is an unbiased and efficient estimator of the
true covariance matrix. However, in many practical situations
we would like to estimate the covariance matrix of a set of
variables from an insufficient amount of data. In this case
the sample covariance matrix is singular (non–invertible) and
therefore a fundamentally bad estimate. More specifically,
let X be a random vector X = (X1, . . . , Xm)T ∈ Cm×1

and assume for simplicity that X is centered. Then the true
covariance matrix is given by

� = E(X X∗) = (cov(Xi , X j ))1≤i, j≤m . (1)

Consider n independent samples or realizations x1, . . . , xn ∈
Cm and form the m × n data matrix M = (x1, . . . , xn). Then
the sample covariance matrix is an m×m non–negative definite
matrix defined as

K = 1

n
M M∗. (2)

If n → +∞ and m is fixed, then the sample covariance matrix
K converges (entrywise) to � almost surely. Whereas, as we
mentioned before, in many empirical problems, the number of
measurements is less than the dimension (n < m), and thus
the sample covariance matrix is singular. Our objective in this
paper is to recover the true covariance matrix � from K under
the condition n < m.

The conventional treatment of covariance singularity artifi-
cially converts the singular sample covariance matrix into an
invertible (positive definite) covariance by the simple expedi-
ent of adding a positive diagonal matrix, or more generally,
by taking a linear combination of the sample covariance
and the identity matrix. This procedure is variously called
“diagonal loading” or “ridge regression” [9], [24]. This one
is defined as αK + β Im where α and β are called loading
parameters. The resulting matrix is positive definite, invertible
and preserves the eigenvectors of the sample covariance. The
eigenvalues of αK + β Im are a uniform rescaling and shift of
the eigenvalues of K . There are many methods in choosing the
optimum loading parameters, see [17], [21], and [22]. On the
other hand, if the true covariance matrix is assumed to
have some level of sparsity, several works have been estab-
lished, such as the banding and thresholding methods stud-
ied by Bickel and Levina [3], [4], Wu and Pourahmadi [35],
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El Karoui [10], and Rothman et al. [25], to mention a few.
In more recent works, Cai et al. [7] and Cai and Zhou [8]
derive the optimal rate of convergence for estimating the
true covariance matrix and its inverse under operator norm,
Frobenius norm and l1 norm, for a large range of sparse
covariance matrices.

In Marzetta, Tucci and Simon’s paper [20] a new approach
to handle singular covariance matrices was suggested. They
use the idea of random dimension reduction. Let p ≤ n be
a parameter, to be estimated later, and consider the set of all
p × m one-sided unitary matrices

�p,m = {� ∈ C
p×m : ��∗ = Ip}. (3)

This set has a manifold structure and is called the Stiefel
manifold. Note that �M , that is the multiplication of the
one-sided unitary matrix � with the data matrix M , results
in a new data matrix with reduced dimension. And

1

n
(�M)(�M)∗ = �K�∗ (4)

can be viewed as a new sample covariance matrix of
size p. Then �∗(�K�∗)� will project the data back to
n-dimensional space. In [20], they endow the Stiefel manifold
with the Haar measure, that is, the uniform distribution on the
set �p,m . Further, they define the operators

covp(K ) = E(�∗(�K�∗)�),

invcovp(K ) = E(�∗(�K�∗)−1�),

where the expectation is taken with respect to the Haar
measure. The operators covp(K ) and invcovp(K ) are used
to estimate the true covariance matrix � and its inverse �−1

respectively. It was found that

covp(K ) = p

(m2 − 1)m

(
(mp − 1)K + (m − p)Tr(K )Im

)
,

which is the same as diagonal loading. Moreover, they inves-
tigated the properties of invcovp(K ). If K is decomposed as
K = U DU∗, with D = diag(d1, . . . , dn, 0, . . . , 0), then

invcovp(K ) = U invcovp(D)U∗,

and

invcovp(D) = diag(λ1, . . . , λn, μ, . . . , μ). (5)

In other words, invcovp(K ) preserves the eigenvectors of K ,
and transforms all the zero eigenvalues to a non–zero constant
value. They also provided formulas to compute the values of λi

and μ, and studied their asymptotic behavior using techniques
from free probability.

The explicit formula of λi ’s of invcovp(D) in (5) is
derived in [20] as a partial derivative of a rather complicated
integral—see (11) and [20, Th. 1]. In this paper, we further
investigate the properties of the invcovp(K ) or equivalently
the invcovp(D) operators. These results are presented in
Section II. We first show that invcovp(D) has a surprisingly
simple algebraic structure, i.e. it is a polynomial of the
diagonal matrix D. We also provide formulas to compute the
coefficients of the polynomial and illustrate the computation

through a small dimensional example in Appendix A. The for-
mulas involve complicated combinatorial subjects and thus
make further investigation on the performance, i.e. optimize
the error functions with respect to the parameters, rather
difficult.

Therefore, it is natural to look for alternative random
operators that are easy to compute, analyze and implement.
It is known that a random unitary matrix with Haar measure
behaves asymptotically like a random uniform permutation
matrix (see [33] and [34]). Our first attempt is to conjugate the
sample covariance matrix K with a permutation matrix Mμ .
In [32], the mean conjugate K1 = E(Mμ K MT

μ ) of a square
matrix K averaging over uniform permutation matrix Mμ is
studied. It is found in [32] that K1 is always a scalar multiple
of identity matrix plus a rank-one matrix (see Remark 5),
which is a well-conditioned matrix in most cases.

Now we investigate the mean conjugate of a matrix K
under a generalized measure on the permutation group,
called the Ewens measure with parameter θ > 0 (see (14)
below). We obtain a closed form expression for the estima-
tor Kθ = E(Mμ K MT

μ ) in Theorem 4 using combinatorial
techniques. We find that the averaging operation on diagonal
matrices is equivalent to the conventional diagonal loading
(see Remark 6). For the matrix K with certain structures,
the averaging over all permutation matrices under Ewens
measure by choosing θ propositional to the dimension m,
is asymptotically equivalent to linear shrinkage estimator
proposed by Lenoit and Wolf [18]. This result is proved in
Section V-A. We propose this new method to estimate the
covariance matrices and call it the mean conjugate estimator
under Ewens measure.

In Section IV, we extend the ideas of constructing the
covp(K ) and invcovp(K ) operators by replacing random
unitary matrices with random permutation matrices. We first
extend the definition of permutation matrices to get p × m
unitary matrices Vμ and use the Ewens measure in Section III.
Then we define two new operators

Kθ,m,p := E
(
V T

μ (Vμ K V T
μ )Vμ

)

K̃θ,m,p := E
(
V T

μ (Vμ K V T
μ )+Vμ

)

to estimate � and �−1 respectively. Here A+ is the Moore-
Penrose pseudo inverse of the A. If A is an m × n complex
or real matrix, then A+ is an n × m complex or real matrix
that satisfies AA+ and A+ A are both Hermitian or symmetric,
AA+ A = A and A+ AA+ = A. For any matrix A, the pseudo
inverse A+ always exists. We provide an explicit formula for
Kθ,m,p and an inductive formula to compute K̃θ,m,p .

In Section V, we first study the asymptotic behavior for cer-
tain matrices with the mean conjugate estimator under Ewens
measure. We conduct some simulation study focusing on the
mean conjugate estimator under Ewens measure. However,
we do not include the simulations on the hybrid operators
Kθ,m,p and K̃θ,m,p since currently we do not have adequate
understanding on them from explicit formulas obtained in
Section IV.

Notation: Throughout this paper, 1S is the indicator func-
tion of a set S. We sometimes use [n] to present the set
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{1, 2, . . . , n}, and Tr(A) is the trace of a matrix A. For an
m × m matrix A, we use the (normalized) Frobenius norm
�A�F = 1√

m

√
Tr(AA∗). We denote A+ the Moore-Penrose

pseudo inverse of the matrix A. For a vector v = (v1, . . . , vm),

we use the Euclidean norm �v�2 =
√∑m

i=1 |vi |2. We use

v(k) to denote the kth entry of v. We use e = (1, . . . , 1)T

to represent the all-one vector and ei are the standard basis
vectors. We use the notation κ 	 n to indicate that κ is an
integer partition of the positive integer n.

II. SOME PROPERTIES OF THE invcovp ESTIMATOR

We first collect some preliminaries about Schur polynomials
that will be needed later in studying the properties of the
invcovp estimator.

A. Preliminaries of Schur Polynomials

A symmetric polynomial is a polynomial P(x1, x2, . . . , xn)
in n variables such that if any of the variables are interchanged
one obtains the same polynomial. Formally, P is a symmetric
polynomial if for any permutation μ of the set {1, 2, . . . , n}
one has that

P(xμ(1), xμ(2), . . . , xμ(n)) = P(x1, x2, . . . , xn).

Symmetric polynomials arise naturally in the study of the
relation between the roots of a polynomial in one variable
and its coefficients, since the coefficients can be given by
a symmetric polynomial expressions in the roots. Symmetric
polynomials also form an interesting structure by themselves.
The resulting structures, and in particular the ring of symmet-
ric functions, are of great importance in combinatorics and
in representation theory (see for instance [13], [19], [23], [26]
for more on details on this topic).

The Schur polynomials are certain symmetric polynomials
in n variables. This class of polynomials is also very important
in representation theory since they are the characters of
irreducible representations of the general linear groups. The
Schur polynomials are indexed by partitions. A partition of a
positive integer n, also called an integer partition, is a way
of writing n as a sum of positive integers. Two partitions that
differ only in the order of their summands are considered to
be the same partition. Therefore, κ = (κ1, . . . , κn) 	 n is a
partition of a positive integer of n if

n∑
i=1

κi = n with κ1 ≥ κ2 ≥ . . . ≥ κn ≥ 0.

The κi ’s are called the parts of κ . Notice that some of the
κi could be zero. Sometimes, we use another equivalent way
to represent a partition. We write κ = (1r1 , 2r2 , . . . , nrn ) 	 n
where ri is the number of i appearing as parts in κ . Thus∑n

i=1 i · ri = n. Integer partitions are usually represented
by the so called Young’s diagrams (also known as Ferrers’
diagrams). A Young diagram is a finite collection of boxes,
or cells, arranged in left–justified rows, with the row lengths
weakly decreasing (each row has the same or shorter length
than its predecessor). Listing the number of boxes on each
row gives a partition κ of a non-negative integer n, the total

Fig. 1. Young digram representation of the partition (5, 4, 1).

number of boxes of the diagram. The Young diagram is said
to be of shape κ , and it carries the same information as
that of partition. For instance, in Figure 1 we can see the
Young diagram corresponding to the partition (5, 4, 1) of the
number 10. Given a partition κ of m. Assume m ≥ n. The
Schur polynomial of shape κ in the variables (d1, . . . , dn) is
defined as

sκ (d1, . . . , dn) = det(d
n+κ j − j
i )n

i, j=1

det(dn− j
i )n

i, j=1

.

Indeed the denominator det(dn− j
i )n

i, j=1 is the determinant of
the Vandermonde matrix

�(d1, . . . , dn) =

⎛
⎜⎜⎜⎝

1 1 · · · 1
d1 d2 · · · dn
...

...
. . .

...

dn−1
1 dn−1

2 · · · dn−1
n

⎞
⎟⎟⎟⎠. (6)

The numerator det(d
n+κ j − j
i )n

i, j=1 is an alternating polynomial
(in other words it changes sign under any transposition of the
variables):

det(d
n+κ j − j
i )n

i, j=1 =
∑
μ∈Sn

�(μ )dκ1
μ(1) · · · dκn

μ(n),

where Sn is the permutation group of the set {1, 2, . . . , n} and
�(μ ) is the sign of the permutation μ .

Thus sκ (d1, . . . , dn) is a symmetric function because the
numerator and denominator are both alternating, and is a
polynomial since all alternating polynomials are divisible by
the Vandermonde determinant (see [13], [19], [26] for more
details here). For instance, s(2,1,1)(x1, x2, x3) = x1 x2 x3 (x1 +
x2 + x3) and

s(2,2,0)(x1, x2, x3) = x2
1 x2

2 + x2
1 x2

3 + x2
2 x2

3

+ x2
1 x2 x3 + x1 x2

2 x3 + x1 x2 x2
3 .

Another related definition is the Hook length, hook(x), of a
box x in Young diagram of shape κ . This is defined as the
number of boxes that are in the same row to the right of it
plus those boxes in the same column below it, plus one (for
the box itself). For instance, in Figure 1, the hook length of
the top-left corner box is 4 + 2 + 1 = 7. The product of the
hook’s length of a partition is the product of the hook lengths
of all the boxes in the partition.

Next, we collect a few properties of Schur polynomials
sκ(d1, . . . , dn) used in later proofs. For an n × n matrix A
with eigenvalues α1, . . . , αn , we use sκ (A) = sκ (α1, . . . , αn).
Denote by (n − k, 1k) the partition (n − k, 1, 1, . . . , 1) with k
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ones. One of the basic properties of Schur polynomials is that
for any integer l ≥ 1,

Tr(Al) =
n−1∑
k=0

(−1)ks(n−l,1l )(A). (7)

Let Dn be a diagonal matrix of size n × n. Consider �p,n,
the Stiefel manifold defined in (3), associated with the Haar
measure dφ. For any � ∈ �p,n , it is proved in [12, eq. (18)]
that ∫

�p,n

sκ(�Dn�∗) dφ = sκ(Dn)sκ (In)

sκ (Ip)
. (8)

Schur polynomials have a close connection with the border
strips of partitions. We follow the definitions in Stanley’s
book [28, Ch. 7.17]. A border strip is a set of boxes in the
Young diagram that forms a contiguous strip and has at most
one box on each diagonal. The height of a border strip is one
less than its number of rows. Given a partition λ 	 n and a
decomposition ρ = (ρ1, . . . , ρl ) of n. A border strip tableau
χκ(ρ) of shape κ and type ρ is obtained by replacing each box
in the Young diagram of κ by one of the integers {1, 2, . . . , l}
so that the boxes replaced by i form a ρi border strip in the
diagram which consists of all boxes replaced by {1, 2, . . . , i}.

By the celebrated Murnaghan–Nakayama rule (see [28,
Corollary 7.17.5]),

s(n− j,1 j )(D) =
∑

ρ=(1r1 ,2r2 ,...,nrn )	n

χ(n− j,1 j )(ρ)

n∏
l=1

Tr(Dl )rl

lrl rl ! ,

(9)

where χκ(ρ) = ∑
T (−1)ht(T ) sums over all border-strip

tableaux of shape κ and type ρ. Here ht(T ) is the height of a
border-strip tableaux (see [28, Sec. 7.17] for more details).

B. A New Property of the invcovp Estimator

Recall invcovp(K ) = E(�∗(�K�∗)−1�). We first
collect the properties of the invcovp(K ) estimator
obtained in the previous work of Marzetta, Tucci and
Simon [20, Secs. IV and VI].

Proposition 1: For a positive semi-definite matrix K of size
m, one can decompose K = U DU∗ where U is unitary and
D = diag(d1, . . . , dm).

1) The eigenvectors of K are preserved under the
invcovp operatoration. More precisely, invcovp(K ) =
U invcovp(D)U∗ and invcovp(D) is diagonal.

2) The zero-eigenvalues of K are converted to equal pos-
itive values. If D = diag(Dn, 0m−n) where Dn =
(d1, . . . , dn) is of full rank, then

invcovp(D) = diag(�L(Dn), μIm−n),

where �L(Dn) = diag(λ1, . . . , λn). Besides, for any
1 ≤ k ≤ n,

λk = ∂

∂dk

∫

�p,n

Tr(log(�Dn�
∗)) dφ,

μ = det(G)

det(�(d1, . . . , dn))
. (10)

Here �(d1, . . . , dn) is the Vandermonde matrix in (6)
and G is the matrix constructed by replacing the pth
row of �(d1, . . . , dn) by the row

(dn−(p+1)
1 log(d1), · · · , dn−(p+1)

n log(dn)).

We prove a new property of the invcovp(K ) estimator.
We will show that invcovp(K ) has a surprisingly simple
algebraic structure despite its rather complicated expression.
Assume K = U DU∗ where U is unitary and D =
diag(d1, . . . , dm). By Proposition 1, it is enough to study the
properties of invcovp(D).

Let A(D) be the algebra generated by the matrices D
and the m × m identity matrix Im . By the Cayley–Hamilton
Theorem, it is clear that

A(D) =
{
αm−1 Dm−1 + . . . + α1 D + α0 Im : αi ∈ C

}
.

We define Dm as the set of all m × m diagonal matrices.
Lemma 2: Let D = diag(d1, . . . , dm) be an m×m diagonal

matrix. If di �= d j for i �= j then A(D) = Dm. If di = d j for
some i �= j then

A(D) = {diag(b1, . . . , bi , . . . , bi , . . . , bm) : bk ∈ C},
the set of all diagonal matrices where the i th and j th entries
are equal.

Proof: First assume di �= d j for all i �= j . It is clear
to see A(D) ⊂ Dm . On the other hand, for any B =
diag(b1, . . . , bm) ∈ Dm , we form a system of linear equations,⎛

⎜⎝
b1
...

bm

⎞
⎟⎠ = V

⎛
⎜⎝

α0
...

αm−1

⎞
⎟⎠,

where

V :=
⎛
⎜⎝

1 d1 d2
1 . . . dm−1

1
... . . .

...
1 dm d2

m . . . dm−1
m

⎞
⎟⎠.

The matrix V is a Vandermonde matrix with det(V ) =∏
i< j (di − d j ). The matrix V is invertible by our assumption.

Thus we can find a vector (α0, . . . , αm−1) such that

B = α0 Im + α1 D + . . . + αm−1 Dm−1 ∈ A(D).

This completes the proof. To prove the second part we use
essentially the same approach as before. �

Theorem 3: The matrix invcovp(D) belongs to the algebra
A(D).

Proof: By Proposition 1, if the matrix D is equal to
D = diag(Dn, 0m−n) where Dn = (d1, . . . , dn) is of full rank,
then invcovp(D) = diag(�L(Dn), μIm−n) where �L(Dn) =
diag(λ1, . . . , λn). And

λk = ∂ F(d1, . . . , dn)

∂dk
,

where we define F(d1, . . . , dn) := ∫
�p,n

Tr(log(�Dn�∗))dφ

for brevity. Recall � ∈ �p,n defined in (3). By (7) and (8),
for any integer l ≥ 1

∫

�p,n

Tr
(
(�Dn�∗)

)l
dφ =

p−1∑
k=0

(−1)kc(n,p)
k s(l−k,1k )(Dn),
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where s(l−k,1k )(Dn) are the Schur polynomials and c(n,p)
k are

explicit constants—see (78) in [20]. From Lemma 2, it is
enough to show that if di = d j for some i �= j , then λi =
λ j . By linearity and continuity, F(d1, . . . , dn) is symmetric.
Hence assuming di = d j , ∂ F/∂di = ∂ F/∂d j , which implies
λi = λ j . This completes the proof. �

C. Formulas for Computing E(�∗(�Dn�∗)l�)

In order to obtain the explicit formulas of covp and invcovp

in [20], it involves computing E(�∗ f (�Dn�∗)�) for a differ-
entiable function f (x) (see parts A and B in [20, Sec. VI]) and
a diagonal matrix Dn = diag(d1, . . . , dn) with all di ’s positive.
For instance, [20, Lemma 1] asserts that if f is differentiable
on the interval [min{di }, max{di}], then

∂

∂dk

∫

�p,n

Tr( f (�Dn�∗)) dφ

=
( ∫

�p,n

�∗ f (�Dn�∗)� dφ
)

kk
= E

(
�∗ f (�Dn�∗)�

)
kk .

Note the eigenvalue λk of invcovp(D) given in (10) is the
left hand side of above identity with f (x) = log x . To fur-
ther understand the invcovp operator, it is helpful to have
the explicit formula for the eigenvalues λk’s. By continuity
and linearity, it is enough to provide formulas for comput-
ing E(�∗(�Dn�∗)l�). In this subsection, we derive such
formulas.

First, we observe that E(�∗(�Dn�∗)l�) is still a diagonal
matrix. The idea of proof is exactly the same as the proof of
Proposition 1. We recall a fact that a matrix A is diagonal if
and only if �∗ A� = A for any diagonal unitary matrix �.
Note that

�∗
E(�∗(�Dn�∗)l�)�

= E

(
(��)∗

(
��(�∗Dn�)(��)∗

)l
��

)

= E(�∗(�Dn�∗)l�),

where we use that �� has the same distribution as �, and
�∗Dn� = Dn .

To compute the diagonal entries of E(�∗(�Dn�∗)l�),
using [20, Lemma 1], we have
(
E(�∗(�Dn�

∗)l�)
)

ii =
( ∫

�p,n

�∗(�Dn�∗)l� dφ
)

ii

= ∂

∂di

∫

�p,n

1

l + 1
Tr(�Dn�∗)l+1 dφ.

(11)

Denote N = l + 1 for convenience. By (7) and (8), we see
that∫

�p,n

Tr
(
(�Dn�

∗)N )
dφ

=
p−1∑
j=0

(−1) j s(N− j,1 j )(Ip)

s(N− j,1 j )(In)
s(N− j,1 j )(Dn)

=
p−1∑
j=0

(−1) j (N + p − ( j + 1))!(n − ( j + 1))!
(N + n − ( j + 1))!(p − ( j + 1))! s(N− j,1 j )(Dn).

(12)

Using the formula (9), one has

∂s(N− j,1 j )(Dn)

∂di
=

N∑
k=1

dk−1
i · c̃k−1 =

N−1∑
k=0

c̃kdk
i , (13)

where we define

c̃k−1 :=
∑

ρ=(1r1 ,2r2 ,...,NrN )
ρ	N

χ(N− j,1 j )(ρ)
rkTr(Dk)rk−1

krk−1rk !

×
∏
l �=k

Tr(Dl )rl

lrl rl ! .

Therefore, combining (11) and (12), we obtain
(
E(�(�∗ D�)l�∗)

)
ii

= 1

l + 1

p−1∑
j=0

(−1) j (l + 1 + p − ( j + 1))!(n − ( j + 1))!
(l + 1 + n( j + 1))!(p − ( j + 1))!

· ∂s(N− j,1 j )(Dn)

∂di

=
l∑

k=0

( c̃k

l + 1

p−1∑
j=0

(−1) j (l + p − j)!(n − j − 1))!
(l + n − j)!(p − j − 1)!

)
dk

i

:=
l∑

k=0

akdk
i .

The coefficients ak depend only on Dn, p and l. Thus we
are able to show E(�∗(�Dn�∗)l�) is a polynomial in Dn of
degree l,

E
(
�∗(�Dn�∗)l�

) =
l∑

k=0

ak Dk
n

where the coefficients are

ak = 1

l + 1

( p−1∑
j=0

(−1) j (l + p − j)!(n − j − 1))!
(l + n − j)!(p − j − 1)!

)

×
∑

ρ=(1r1 ,...,(l+1)rl+1 )
ρ	l+1

χ(l+1− j,1 j )(ρ)
rk+1Tr(Dk+1)rk+1−1

(k + 1)rk+1−1rk+1!

·
∏

l �=k+1

Tr(Dl )rl

lrl rl ! .

In the Appendix A, we provide a small dimensional example
to show how to apply the derived formula for computation.

III. THE MEAN CONJUGATE ESTIMATOR

UNDER EWENS MEASURE

Let Sm be the set of permutations of the set [m] :=
{1, 2, . . . , m}. For each permutation μ ∈ Sm , by cycle decom-
position, μ can be viewed as the disjoint union of cycles of
varying lengths. The Ewens measure is a probability measure
on the set of permutations that depends on a parameter θ > 0.
In this measure, each permutation has a weight proportional
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to its total number of cycles. More specifically, for each
permutation μ in Sm its probability is equal to

pθ,m(μ ) = θ#cycl(μ )

θ(θ + 1) . . . (θ + m − 1)
, (14)

where θ > 0 and #cycl(μ ) is the number of cycles in μ . The
case θ = 1 corresponds to the uniform measure. This measure
has recently appeared in mathematical physics models (see
e.g. [2] and [11]) and one has only recently started to gain
insight into the cycle structures of such random permutations.

Let μ be a permutation in Sm , the corresponding permuta-
tion matrix Mμ is the m × m matrix defined as Mμ (i, j) =
1μ(i)( j). If we denote ei to be a 1 × m vector such that the
i–th entry is equal to 1 and all the others entries are 0, then

Mμ =
⎛
⎜⎝

eμ(1)
...

eμ(m)

⎞
⎟⎠,

which is, of course, a unitary matrix. Given the sample
covariance matrix K we define the new estimator for � as

Kθ := E(Mμ K M∗
μ ), (15)

where the expectation is taken with respect to the Ewens
measure of parameter θ .

Theorem 4: Let K = (ai j ) be an m × m matrix in Cm×m.
Then Kθ = E(Mμ K M∗

μ ) is an m × m matrix such that the
diagonal terms satisfy

(Kθ )ii = θ − 1

θ + m − 1
aii + 1

θ + m − 1
Tr(K ), (16)

and the non–diagonal terms (i �= j) satisfy

(Kθ )i j = 1

(θ + m − 2)(θ + m − 1)

(
θ2ai j + (θ − 1)a j i

+ θ
∑

k �=i, j

(aik + akj ) +
∑

l �=i,k �= j
k �=l

alk

)

= 1

(θ + m − 2)(θ + m − 1)

(
(θ2 − 1)ai j + (θ − 1)a j i

+ (θ − 1)
∑

k �=i, j

(aik + akj ) +
∑
l �=k

alk

)
. (17)

Remark 5: If θ = 1, then

K1 = α
eeT

m
+ β(Im − eeT

m
), (18)

where

α = eT K e
m

=
∑

i, j ai j

m
, β = Tr(K ) − α

m − 1

and e = (1, 1, . . . , 1)T . This result has already been shown in
[32, Proposition 2.2] .

Remark 6: If K = D = diag(d1, . . . , dm), then

Kθ = θ − 1

θ + m − 1
D + Tr(D)

θ + m − 1
Im ,

which corresponds to the diagonal loading.

Proof: First,

Mμ K M∗ =
⎛
⎜⎝

eμ(1)
...

eμ(m)

⎞
⎟⎠ K

(
e∗
μ(1) · · · e∗

μ(m)

)

=
( m∑

l=1

m∑
k=1

akleμ(i)(k)eμ( j )(l)
)
=(aμ(i)μ ( j ))1≤i, j≤m.

For diagonal terms, recall the probability measure pθ,m in
(14),

(Kθ )ii = (
E(Mμ K M∗

μ )
)

ii =
∑
μ∈Sm

pθ,m(μ )aμ(i)μ (i)

= aii

∑
μ∈Sm
μ(i)=i

pθ,m(μ ) +
∑
l �=i

all

∑
μ∈Sm
μ(i)=l

pθ,m(μ )

= aii
θ

θ + m − 1

∑
μ̃∈Sm−1

pθ,m−1(μ̃ )

+
∑
l �=i

all

θ + m − 1

∑

μ̂ (l)

pθ,m−1(μ̂ (l))

= θ

θ + m − 1
aii + 1

θ + m − 1

∑
l �=i

all

= θ − 1

θ + m − 1
aii + 1

θ + m − 1
Tr(K ).

Now we compute the off–diagonal terms (Kθ )i j (i �= j).
For μ ∈ Sm , if μ(i) = i and μ( j) = j then μ = (i)( j)μ1 with
μ1 ∈ Sm−2, #cycl(μ ) = #cycl(μ1) + 2 and

pθ,m(μ ) = θ2

(θ + m − 2)(θ + m − 1)
pθ,m−2(μ1).

If μ(i) = j and μ( j) = i we erase i and j from μ to obtain
μ2 ∈ Sm−2, and

pθ,m(μ ) = θ

(θ + m − 2)(θ + m − 1)
pθ,m−2(μ2).

If μ(i) = i and μ( j) = k �= i, j then μ = (i)μ̂ with μ̂ ∈ Sm−1
and #cycl(μ ) = #cycl(μ̂ ) + 1. Furthermore, we can erase j
from μ̂ to get a new permutation μ3(k) ∈ Sm−2 such that
#cycl(μ3(k)) = #cycl(μ̂ ) and finally

pθ,m(μ ) = θ

(θ + m − 2)(θ + m − 1)
pθ,m−2(μ3(k)).

Notice that
∑

μ3(k) pθ,m−2(μ3(k)) = 1.
If μ(i) = l �= i, j and μ( j) = j then as above we can have

μ4(l) ∈ Sm−2 such that

pθ,m(μ ) = θ

(θ + m − 2)(θ + m − 1)
pθ,m−2(μ4(l))

and again
∑

μ4(l) pθ,m−2(μ4(l)) = 1.
If μ(i) = l �= i and μ( j) = k �= j (k �= l) we exclude the

case that μ(i) = j, μ ( j) = i and we erase i and j from μ to
obtain μ5(l, k) ∈ Sm−2. Thus

pθ,m(μ ) = 1

(θ + m − 2)(θ + m − 1)
pθ,m−2(μ5(l, k))

and
∑

μ5(l,k) pθ,m−2(μ5(l, k)) = 1.
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Therefore, for i �= j

(Kθ )i j =
∑
μ∈Sm

pμ,m(μ )aμ(i)μ ( j )

= ai j
θ2

(θ + m − 2)(θ + m − 1)

∑
μ1∈Sm−2

pθ,m−2(μ1)

+ a j i
θ

(θ + m − 2)(θ + m − 1)

∑
μ2∈Sm−2

pθ,m−2(μ2)

+
∑

k �=i, j

aik · θ

(θ + m − 2)(θ + m − 1)

×
∑

μ3(k)∈Sm−2

pθ,m−2(μ3(k))

+
∑
l �=i, j

al j · θ

(θ + m − 2)(θ + m − 1)

×
∑

μ4(l)∈Sm−2

pθ,m−2(μ4(l)) +
∑

k �=i, j and l �=i, j
k �=l

×
∑

μ5(k,l)∈Sm−2

alk pθ,m−2(μ5(k, l))

(θ + m − 2)(θ + m − 1)

= 1

(θ + m − 2)(θ + m − 1)

(
θ2 ai j + (θ − 1)a j i

+ θ
∑

k �=i, j

(aik + akj ) +
∑

k �=i, j and l �=i, j
k �=l

alk

)
. �

IV. HYBRID METHOD

In this section, we combine the ideas of the first two
methods to create a third hybrid method. First, we extend the
definition of a permutation. For an integer p ≤ m, let

Sp,m

:= {μ : μ an injection from {1, 2, . . . , p} to {1, 2, . . . m}}.
The size of the set Sp,m is m!

(m−p)! and it is clear that Sm,m is the
set of all permutations on [m]. For μ ∈ Sp,m , the associated
p × m matrix takes the form

Vμ :=

⎛
⎜⎜⎜⎝

eμ(1)

eμ(2)
...

eμ(p)

⎞
⎟⎟⎟⎠,

where eμ(i) = (e1
μ(i), e2

μ(i), . . . , em
μ(i)) is a 1 × m row vector

with the μ(i)–th entry 1 and all others 0. Notice

Vμ V T
μ = Ip, (19)

and

Pμ := V T
μ Vμ = diag(bμ

1 , . . . , bμ
m), (20)

where

bμ
i =

p∑
l=1

(eμ(l)(i))
2 =

{
1 if i ∈ {μ(1), . . . , μ (p)},
0 otherwise.

Next, we use the Ewens measure on the permutation sets to
define a probability on the set Sp,m . For each μ ∈ Sp,m ,
consider the set

�μ :=
{
μ̃ ∈ Sm : μ̃{1,...,p} = μ

}
.

In other words, �μ is the set of all permutations in Sm whose
restriction to the set {1, 2, . . . , p} is equal to μ . Recall that
pθ,m is the Ewens measure on Sm with parameter θ . Define
the probability measure on Sp,m for μ ∈ Sp,m as

μθ,m,p(μ ) := pθ,m(�μ ) =
∑

μ̃∈�μ

pθ,m(μ̃ ). (21)

Now we are ready to introduce two new operators

Kθ,m,p := E

(
V T

μ (Vμ K V T
μ )Vμ

)
(22)

K̃θ,m,p := E

(
V T

μ (Vμ K V T
μ )+Vμ

)
, (23)

where (Vμ K V T
μ )+ is the Moore–Penrose pseudo inverse of

the matrix Vμ K V T
μ . Recall the Moore–Penrose pseudo inverse

of a square matrix A is a matrix A+ of the same size and
satisfies AA+ and A+ A are both Hermitian, AA+ A = A and
A+ AA+ = A. We use Kθ,m,p as an estimate for � and K̃θ,m,p

for �−1. Now we show a few results on these new estimators.
Theorem 7: Let K = (ai j ) be an m × m complex matrix.

Then Kθ,m,p as in (22) is an m × m matrix such that the
diagonal entries are equal to

(Kθ,m,p)ii =
{

θ+p−1
θ+m−1 aii , if 1 ≤ i ≤ p,

p
θ+m−1 aii , if p + 1 ≤ i ≤ m,

and the non–diagonal entries, assuming i < j (if j < i then
exchange i and j in the following expression) are equal to

(Kθ,m,p)i j =

⎧
⎪⎨
⎪⎩

(θ+p−1)(θ+p−2)
(θ+m−1)(θ+m−2)ai j , if 1 ≤ i < j ≤ p,

(p−1)(θ+p−1)
(θ+m−1)(θ+m−2)ai j , if 1 ≤ i ≤ p < j ≤ m,

p(p−1)
(θ+m−1)(θ+m−2)ai j , if p < i < j ≤ m.

Remark 8: In the special case that K = diag(d1, . . . , dm)
is a diagonal matrix, then

Kθ,m,p = p

θ+m−1
K + θ−1

θ + m − 1
diag(d1, . . . , dp, 0, . . . , 0).

For instance, if p = 1 and m = 3 then

Kθ,3,1 = 1

θ + 2
diag(θa11, a22, a33).

Remark 9: In the general case with p = 2 and m = 3 then

Kθ,3,2 = 1

θ + 2

⎛
⎝

(θ + 1)a11 θa12 a13
θa21 (θ + 1)a22 a23
a31 a32 2a33

⎞
⎠.

Proof: Recall from Equation (20) that

Pμ = V T
μ Vμ = diag(bμ

1 , . . . , bμ
m),

thus V T
μ (Vμ K V T

μ )Vμ = (bμ
i bμ

j ai j )1≤i, j≤m, where

bμ
i =

p∑
l=1

(eμ(l)(i))
2 =

{
1 if i ∈ {μ(1), . . . , μ (p)},
0 otherwise.
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For the diagonal entries, if 1 ≤ i ≤ p,

(Kθ,m,p)ii

=
∑

μ∈Sm,p

μθ,m,p(μ )(bμ
i )2 aii

= aii

p∑
l=1

∑
μ∈Sm,p,μ (l)=i

μθ,m,p(μ )

= aii

( ∑
μ∈Sm,p,μ (i)=i

μθ,m,p +
∑
l �=i

∑
μ∈Sm,p,μ (l)=i

μθ,m,p

)

= aii

( θ

θ + m − 1

∑
μ ∈Sm−1,p−1

μθ,m−1,p−1

+ p − 1

θ + m − 1

∑
μ ∈Sm−1,p−1

μθ,m−1,p−1

)

= θ + p − 1

θ + m − 1
aii .

If p + 1 ≤ i ≤ m,

(Kθ,m,p)ii =
∑

μ∈Sm,p

μθ,m,p(μ )(bμ
i )2 aii

= aii

p∑
l=1

∑
μ∈Sm,p,μ (l)=i

μθ,m,p(μ )

= aii

( p

θ + m − 1

∑
μ ∈Sm−1,p−1

μθ,m−1,p−1

)

= p

θ + m − 1
aii .

For non-diagonal entries, if 1 ≤ i < j ≤ p, which turns
out to be the most complicated case, bμ

i bμ
j ai j is non zero if

i, j ∈ {μ(1), . . . , μ (p)}. Thus

(Kθ,m,p)i j = ai j

∑
s,t∈[p],s �=t

∑
μ∈Sm,p ,

μ (s)=i,μ (t)= j

μθ,m,p(μ ).

We divide the previous sum into five parts:

1) If μ(i) = i and μ( j) = j we “erase” i and j from the
sets [p] and [m] to get a new injection μ1 from [p]\{i, j}
to [m]\{i, j} with #cycl(μ ) = #cycl(μ1) + 2;

2) If μ(s) = i for some s ∈ [p]\{i, j} and μ( j) = j
we “erase” j from the sets [p] and [m] and consider
s and i as one number s̃. Then we get a new injection
μ2 : [p]∪ s̃\{i, j, s} → [m]∪ s̃\{i, j, s} with #cycl(μ ) =
#cycl(μ2) + 1;

3) If μ(t) = j for some t ∈ [p]\{i, j} and μ(i) = i
then, similarly to case (2), by exchanging the roles of i
and j we can get a new injection μ3 with #cycl(μ ) =
#cycl(μ3) + 1;

4) If μ(s) = i and μ(t) = j with s �= t for some s ∈
[p]\{i} and t ∈ [p]\{ j} then we consider s and i as
a new number s̃ and t and j as a new number t̃ to
get a new injection μ4 : [p] ∪ s̃, t̃\{i, j, s, t} → [m] ∪
s̃, t̃\{i, j, s, t} with #cycl(μ ) = #cycl(μ4);

5) If μ(i) = j and μ( j) = i we “erase” i and j to
get a new injection μ5 : [p]\{i, j} → [m]\{i, j} with

#cycl(μ ) = #cycl(μ5) + 1.

(Kθ,m,p)i j = ai j θ
2

(θ + m − 1)(θ + m − 2)

×
∑

μ1∈Sm−2,p−2

μθ,m−2,p−2(μ1)

+ ai j θ(p − 2)

(θ + m − 1)(θ + m − 2)

×
∑

μ2∈Sm−2,p−2

μθ,m−2,p−2(μ2)

+ ai j θ(p − 2)

(θ + m − 1)(θ + m − 2)

×
∑

μ3∈Sm−2,p−2

μθ,m−2,p−2(μ3)

+ ai j [(p − 2)2 + (p − 2)]
(θ + m − 1)(θ + m − 2)

×
∑

μ4∈Sm−2,p−2

μθ,m−2,p−2(μ4)

+ ai j θ

(θ + m − 1)(θ + m − 2)

×
∑

μ5∈Sm−2,p−2

μθ,m−2,p−2(μ5)

= (θ + p − 1)(θ + p − 2)

(θ + m − 1)(θ + m − 2)
ai j .

For 1 ≤ i ≤ p < j ≤ m we only need consider two cases:
s = i and s �= i ,

(Kθ,m,p)i j

= ai j
θ(p − 1)

(θ + m − 1)(θ + m − 2)

∑
μ1∈Sm−2,p−2

μθ,m−2,p−2(μ1)

+ ai j
(p − 1)2

(θ + m − 1)(θ + m − 2)

∑
μ2∈Sm−2,p−2

μθ,m−2,p−2(μ2)

= ai j
(p − 1)(p + θ − 1)

(θ + m − 1)(θ + m − 2)
.

For p < i < j ≤ m,

(Kθ,m,p)i j = ai j
p(p − 1)

(θ + m − 1)(θ + m − 2)
. �

Now we consider the estimate K̃θ,m,p as in Equation (23).
First we analyze the case when K is diagonal.

Theorem 10: Let D = Dm = diag(d1, . . . , dn, 0, . . . , 0),
then for p ≤ n,

K̃θ,m,p = E

(
V T

μ (Vμ DV T
μ )+Vμ

)

= θ + p − 1

θ + m − 1
D+ − θ − 1

θ + m − 1
× diag(d−1

1 , . . . , d−1
p , 0, . . . , 0),

where D+ = diag(d−1
1 , . . . , d−1

n , 0, . . . , 0) by definition.
Proof: First we notice that

Wμ := Vμ DV T
μ = (

n∑
i=1

dleμ(i)(l)eμ( j )(l))1≤i, j≤p
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is a diagonal matrix. For 1 ≤ i ≤ p,

(Wμ )ii =
n∑

l=1

dl(eμ(i)(l))
2 =

{
dμ(i) if μ(i) ∈ [n],
0 otherwise.

Thus

Wμ = diag(dμ(1)1μ(1)∈[n], . . . , dμ(p)1μ(p)∈[n])

and

W+
μ = diag

(
(dμ(1)1μ(1)∈[n])+, . . . , (dμ(p)1μ(p)∈[n])+

)
.

Next V T
μ W+Vμ = ∑p

l=1(dμ(l)1μ(l)∈[n])+ is still a diagonal
matrix where for 1 ≤ i ≤ m

(V T
μ W+Vμ )ii =

{
(dμ(l)1μ(l)∈[n])+ if i ∈ {μ(1), . . . , μ (p)},
0 otherwise.

Therefore K̃θ,m,p is also diagonal and

(K̃θ,m,p)ii =
p∑

l=1

∑
μ∈Sm,p ,
μ (l)=i

μθ,m,p(μ )(di 1i∈[n])+.

For 1 ≤ i ≤ n,

(K̃θ,m,p)ii = d−1
i

∑
μ∈Sm,p,
μ (l)=i

μθ,m,p(μ )

=

⎧⎪⎨
⎪⎩

d−1
i

p

θ + m − 1
, if 1 ≤ i ≤ p,

d−1
i

θ + p − 1

θ + m − 1
, if p + 1 ≤ i ≤ n.

For n + 1 ≤ i ≤ m, (K̃θ,m,p)ii = 0. �
Obtaining a close form expression for Equation (23) in the

general case seems to be much more challenging. However,
we are able to obtain an inductive formula with the help of a
result of Kurmayya and Sivakumar’s result [16].

Theorem 11: ([16, Th. 3.2]) Let M = [A a] ∈ Rm×n be a
block matrix, with A ∈ Cm×(n−1) and a ∈ Cm being written
as a column vector. Let B = M∗M and s = �a�2 − a∗ AA+a.
Then if s �= 0

B+ =
(

(AA∗)+ + s−1(A+a)(A+a)∗ −s−1(A+a)

−s−1(A+a)∗ s−1

)
,

and if s = 0,

B+ =
( B −�b�2 A+a + A+b

−�b�2(A+a)∗ + (A+b)∗ �b�2

)
,

where

B = �b�2(M+
1 a)(M+

1 a)∗ − (M+
1 a)(M+

1 b)∗ − (M+
1 b)(M+

1 a)∗

and

b = (A∗)+(I + A+a(A+a)∗)−1 A+a.

For a non–negative definite matrix K , one can decompose

K = U DU∗

=

⎛
⎜⎜⎜⎝

u1
u2
...

um

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

d1
d1

. . .

dm

⎞
⎟⎟⎟⎠

(
u∗

1 u∗
2 . . . u∗

m

)
,

where U is a unitary matrix and D = diag(d1, . . . , dm). Then

Wμ = Vμ K V T
μ

=

⎛
⎜⎜⎜⎝

uμ(1)

uμ(2)
...

uμ(p)

⎞
⎟⎟⎟⎠ D

(
u∗

μ(1) u∗
μ(2) . . . u∗

μ(p)

)

=

⎛
⎜⎜⎜⎝

ũμ(1)

ũμ(2)
...

ũμ(p)

⎞
⎟⎟⎟⎠

(
ũ∗

μ(1) ũ∗
μ(2) . . . ũ∗

μ(p)

) := M∗M,

where we denote

ũi = (
√

d1ui
i , . . . ,

√
dmum

i ).

Let M = [M1 a] with M1 = (
ũ∗

μ(1) ũ∗
μ(2) . . . ũ∗

μ(p−1)

)
and

a = ũ∗
μ(p). Let s = �a�2 − a∗M1 M+

1 a and b = (M∗
1 )+(I +

M+
1 a(M+

1 a)∗)−1M+
1 a. By Theorem 11,

(M∗M)+ =
(

(M1 M∗
1 )+ 0

0 0

)
+ Eμ

where the matrix Eμ is equal to(
s−1(M+

1 a)(M+
1 a)∗ −s−1(M+

1 a)

−s−1(M+
1 a)∗ s−1

)

if s �= 0, and is equal to(
E −�b�2M+

1 a + M+
1 b

−�b�2(A+a)∗ + (A+b)∗ �b�2

)

if s = 0. Here E represents the following expression

�b�2(M+
1 a)(M+

1 a)∗ − (M+
1 a)(M+

1 b)∗ − (M+
1 b)(M+

1 a)∗.

Therefore,

K̃θ,m,p = E(V T
μ

(
(M1 M∗

1 )+ 0
0 0

)
Vμ ) + E(V T

μ Eμ Vμ )

= K̃θ,m,p−1 + E(V T
μ Eμ Vμ ).

V. PERFORMANCE AND SIMULATIONS

In this section, we study the performance of our estimators
and we compare them with other traditional methods. We focus
on two types of true covariance matrix � of size m × m.
In the first example, � = Aα is an m ×m Toeplitz covariance
matrix with entries �i j = α|i− j |. Here 0 < α < 1. Note that
det(Aα) = (1 − α2)m−1 and thus Aα is positive semi-definite
if and only if |α| ≤ 1. We call Aα the power Toeplitz matrix.
We observe that Aα is sparse in the sense that its entries decay
in an exponential rate as they move away from the diagonal.
In our experiment, we take α = 0.5.

In the other example, we take � = BH to be the long-range
dependence matrix of the form

�i j = 1

2
[(|i − j | + 1)2H − 2|i − j |2H + (|i − j | − 1)2H )]

with H ∈ [0.5, 1]. This kind of covariance matrix presents
a process exhibiting long-range dependence, for example, the
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increment process of fractional Brownian motion (see [3] for
instance). Contrary to the power Toepltiz matrix Aα, the off-
diagonal entries of BH (even far away from the diagonal) show
long-range dependence and have non-negligible effort to the
whole matrix. We choose H = 0.9 in the simulation.

A. Asymptotic Behavior of the Mean Conjugate Estimator
Under Ewens Measure

In this subsection, we study the asymptotic behavior for
some covariance matrices using the mean conjugate estimator
under Ewens measure. For an m × m symmetric matrix K ,
denote the eigenvalues λ1(K ) ≤ . . . ≤ λm(K ). The simplest
statistic of the eigenvalues is the empirical spectral measure

μK
m = 1

m

m∑
j=1

δλ j (K ).

That is, for any set E ⊂ R, μm(E) counts the proportion of
eigenvalues of K that lie in E .

We show that if the diagonal entries of K are all equal to
1 and the off-diagonal entries are not too big, then by choos-
ing θ proportional to the dimension in the Ewens measure,
Kθ = E(Mμ K M∗

μ ) is asymptotically equivalent to a convex
combination of K and the identity matrix I .

For two positive functions f (n), g(n), denote f (n) =
o(g(n)) if f (n)/g(n) → 0 as n → ∞ and f (n) = O(g(n))
if f (n) ≤ Cg(n) for some C > 0 for n sufficiently large.

Theorem 12: For an m × m symmetric matrix K = (ai j ),
assume aii = 1 for all 1 ≤ i ≤ m,

∑
i �= j

a2
i j = O(m), |

∑
l �=k

alk | = o(m3/2)

and
∑
i �= j

[ ∑
k �=i, j

(aik + akj )
]2 = o(m3). (24)

Then for the mean conjugate estimator Kθ as in (15) with
θ = βm, we have

lim
m→∞ μKθ

m = lim
m→∞ μ

β2

(β+1)2
K+(1− β2

(β+1)2
)Im

m .

Proof: By [1, Lemma 2.3] the Levy metric of the empirical
distributions of two m × m Hermitian matrix A, B satisfies

L(μA
m , μB

m) ≤
( 1

m
Tr(A − B)(A − B)∗

)1/3
.

It is known (see [14, Th. 6, Sec. 4.3]) that the distribution
functions μm converges weakly to μ if and only if the Levy
metric L(μm , μ) → 0. Let

E = Kθ − (
Im + β2

(β + 1)2 (K − Im)
)
.

Thus it is enough to check that

1

m
Tr(E ET ) = 1

m

∑
i, j

E2
i j → 0

as m → ∞.

Note that aii = 1 and θ = βm. Applying Theorem 4,
we obtain Eii = 0 and for i �= j ,

Eij = (Kθ )i j − β2

(β + 1)2 ai j

=
[ β2 m2 − βm − 2

(βm + m − 2)(βm + m − 1)
− β2

(β + 1)2

]
ai j

+ βm − 1

(βm + m − 2)(βm + m − 1)

∑
k �=i, j

(aik + akj )

+ 1

(βm + m − 2)(βm + m − 1)

∑
l �=k

alk .

Therefore, using the basic inequality (a + b + c)2 ≤ 3a2 +
3b2 + 3c2, we have

1

m
Tr(E ET ) = 1

m

∑
i �= j

E2
i j

≤ 3

m

[
β2 m2−βm − 2

(βm+m − 2)(βm + m − 1)
− β2

(β + 1)2

]2

×
∑
i �= j

a2
i j + 3

m

β2 m2

(βm + m − 2)4

×
∑
i �= j

[ ∑
k �=i, j

(aik + akj )
]2

+ 3

m

m2

(βm + m − 2)4

(∑
l �=k

alk
)2

= o
(∑

i �= j a2
i j

m

)
+O

( 1

m3

∑
i �= j

[ ∑
k �=i, j

(aik +akj )
]2

)

+ O
( 1

m3

(∑
l �=k

alk
)2

)
= o(1)

by the assumption. This completes the proof. �
Remark 13: Theorem 12 asserts if K possesses some level

of sparsity in terms of (24), then asymptotically Kθ behaves
like a linear convex combination of Im and the sample covari-
ance matrix K . We only show the convergence of the overall
behavior of the eigenvalues. Indeed, if we impose stronger
conditions on the entries of K , i.e.∑

i �= j

a2
i j = O(1), |

∑
l �=k

alk | = o(m1/2)

and ∑
i �= j

[ ∑
k �=i, j

(aik + akj )
]2 = o(m2),

then the matrix E in the proof of Theorem 12 satisfies
�E�F = o(1). By Weyl’s inequality, one gets the individual
eigenvalue of Kθ is close to that of β2

(β+1)2 K + (1− β2

(β+1)2 )Im .
Similarly, by imposing extra conditions on the eigenvalues
of K , one can obtain results on the perturbation of eigen-
vectors using the classical Davis-Kahan theorem (see for
instance [29, Sec. V]). However, we found these imposed
conditions are rather restrictive. It is an intriguing question to
investigate the optimal conditions to guarantee the closeness
of Kθ and β2

(β+1)2 K + (1 − β2

(β+1)2 )Im .
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Fig. 2. Difference between the Ewens and linear shrinkage estimators for
� = Aα (the blue diamonds) and � = BH (the red triangles).

Remark 14: Ledoit and Wolf [18] introduce the linear
shrinkage estimator or the LW estimator

KLW = ρ1 Im + ρ2 K

to estimate the true covariance matrix �. They provide the
optimal parameter ρ∗

1 and ρ∗
2 to minimize the error E�KLW −

��F in the space of {ρ1 Im +ρ2 K : ρ1, ρ1 non-random}. The
values of ρ∗

1 and ρ∗
2 actually depend on the true covariance

matrix �. Specially, if �ii = 1 for all i , then ρ∗
1 +ρ∗

2 = 1 and
KLW is the linear convex combination of Im and K . They
suggest consistent estimators ρ̂1 and ρ̂2 (see [18, Sec. 3.2])
without prior knowledge of �. We will use the LW estimator
KLW with parameters ρ̂1 and ρ̂2 for performance comparison.

Remark 15: For the power Toeplitz matrix Aα =
(α|i− j |)1≤i, j≤m . Assume 0 < α < 1, it is easy to verify that
Aα satisfies (24) and thus the conclusion of Theorem 12 holds
for Aα . Next let K = (ai j )1≤i, j≤m be the sample covariance
matrix generated using Gaussian random variables. If the
off-diagonal entries are not prominent (with high probability)
in the sense of (24), then the effect of the Ewens estimator
with parameter θ = βm is asymptotically the same as the
linear shrinkage estimator. Set β = 5 and denote ρ = β2

(β+1)2 .
In Figure 2, we plot the difference

�Kθ − (
ρ Im + (1 − ρ)K

)�N F

for m = 40, 80, 120, 160, 200 and n = m/2, averaged
over 50 repetitions. The blue line corresponds to the power
Toeplitz matrix and the red dashed line is for the long-range
dependence matrix. If the true covariance matrix � is the
power Toeplitz matrix, then the difference between Kθ and
ρ Im+(1−ρ)K under the normalized Frobenius norm is getting
smaller as m, n getting larger. However, if � is the long-range
dependence matrix, the difference between the Ewens estima-
tor and the linear shrinkage estimator is getting bigger with
the matrix size. This suggests the Ewens estimator has rather
different behavior from the linear shrinkage estimator for the
long-range dependence matrix.

B. Simulation Study: Finite Sample

In this subsection, we present some simulations to test the
performance of our estimators. Let the random vector X =
(X1, . . . , Xm )T have multivariate normal distribution N(0,�).
Now we have n measurements (x1, . . . , xn) where xi ’s are
independent copies of X . Let M = (x1, . . . , xn) and form the
sample covariance matrix K = M MT /n. Assume n < m,
we want to recover � to the best of our knowledge.

For brevity, we call the mean conjugate estimator under
Ewens measure the Ewens estimator, and the linear shrinkage
estimator by Ledoit and Wolf [18] (see Remark 14 above)
the LW estimator. We will compare the performance of the
estimators KLW , invcovp(K ) and Kθ = E(Mμ K M∗

μ ) as well
as the sample covariance matrix K itself. We will consider the
error function

�K − ��N F = ( 1

m

m∑
i, j=1

(Kij − �i j )
2)1/2

in terms of the normalized Frobenius norm for an estimator
K of � for performance comparison.

1) Choosing the Parameter θ for Ewens Estimator: We first
suggest how to choose the parameter θ for the Ewens estima-
tor Kθ . Given the sample covariance matrix K , the explicit
formula of Kθ is provided in Theorem 4. We compute the
formula of E�Kθ − ��2

N F in (33) in Appendix B, which is
denoted by G�(θ) for brevity. Note that G�(θ) in (33) is a
rational function of the form

G�(θ) = a4θ
4 + a3θ

3 + a2θ
2 + a1θ + a0

(θ + m − 1)2(θ + m − 2)2 ,

where the coefficients ai ’s depend on m, n and the matrix �.
An intuitive way to choose θ is to set

θ0 = argminθ>0G�(θ),

which is the best choice under the expected quadratic nor-
malized Frobenius loss function. We call this θ0 the oracle
parameter. If one has access to � (or a few quantities of
� appearing in the formula (33)), then θ0 is obtained by
minimizing a rational function given m and n, and we simply
take θ = θ0 in the Ewens estimator. However, in application,
it is rare that any information of � is known beforehand and
only the sample covariance matrix K is available. To choose θ ,
we suggest the following method.

Since the coefficients ai ’s in G�(θ) depend smoothly on
m, n and the matrix �, a small perturbation of ai ’s only
leads to a small perturbation of the minimum value of G�(θ).
Given the sample covariance matrix K , we replace � in the
expression of G�(θ) with K and choose the parameter

θ̂ = argminθ>0GK (θ). (25)

We estimate the true covariance matrix � using the Ewens
estimator K θ̂ .

In Figure 3, we plot the graphs of
√G�(θ) as a function of

θ > 0 for given pairs of m, n, for the power Toeplitz matrix
and long-range dependence matrix respectively. In all plots,
we can see that

√G�(θ) achieves the unique minimum at an
oracle value θ0 > 0.
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Fig. 3. Plots of
√G�(θ) for � = Aα and � = BH .

TABLE I

POWER TOEPLTIZ MATRIX � = Aα (α = 0.5): ORACLE AND ESTIMATED θ AND THEIR CORRESPONDING

LOSS VALUES AND LOSS OF THE SAMPLE COVARIANCE MATRIX

TABLE II

LONG-RANGE DEPENDENCE MATRIX � = BH (H = 0.9): ORACLE AND ESTIMATED θ AND THEIR CORRESPONDING

LOSS VALUES AND LOSS OF THE SAMPLE COVARIANCE MATRIX

In Table I and Table II, we numerically compute the oracle
parameter θ0 and its corresponding loss value (E�Kθ0 −
��2

N F )1/2 = √G�(θ0). We also find the estimated θ̂ and its
loss value �K θ̂ −��N F , as well as the loss value �K −��N F

of using the sample covariance matrix K directly. These three
quantities are averaged over 50 repetitions. In both tables,
we note that both θ0 and θ̂ increase with the matrix size m
and decrease with the ratio n/m. However, our suggested θ̂
is quite far from the oracle θ0. This happens possibly because
the coefficients ai ’s are perturbed by a large value when we
replace � with K . It is not clear to us yet how to select a
better parameter θ . Comparing Table I with Table II, we see
that for the long-range dependence matrix, �K θ̂ − ��N F

differs very little from
√G�(θ0), even though θ̂ is not a good

approximation of θ0. In all cases, directly using the sample
covariance matrix K provides the worst performance.

2) Performance Comparision: We compare the performance
of the Ewens estimator, LW estimator, the Invcovp estimator
and the sample covariance matrix, for both models: power
Toeplitz matrix Aα (α = 0.5) and long-range dependence
matrix BH (H = 0.8).

For the Invcovp estimator, we approximate the true covari-
ance matrix � by (p/m)invcovp(K )−1 and consider the loss
function

�(p/m)invcovp(K )−1 − ��N F .
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Fig. 4. Plots of �(p/m)invcov p(K )−1 − ��N F for � = Aα and � = BH .

Due to the complicated expression of the Invcovp operator,
it is hard to suggest how to turn the parameter p. In Figure 4,
we plot the graphs of �(p/m)invcovp(K )−1 − ��N F for all
values of 5 ≤ p ≤ n for given pairs of m, n. For the power
Toeplitz matrix, the optimum values of p are approximately
p = 8 for m = 40, n = 20, p = 13 for m = 80, n = 40, p =
18 for m = 120, n = 60 and p = 26 for m = 160, n = 80. For
the long-range dependence matrix, the optimum values of p
happen at its largest possible value n. We take these optimum
values p in later comparison. Although it does not seem a
fair game for other estimators, we will see that the Invcovp

estimator is never the best estimator, even with the optimum
parameter p.

In Figure 5, we compare the performance of the estimators.
We plot the loss function values

�Estimator − ��N F

for m = 40, 80, 120, 160 and n = m/2, averaged over
50 repetitions, for � the power Toeplitz matrix and the
long-range dependence matrix.

For the power Toeplitz matrix (left figure in Figure 5),
we observe that the LW estimator (yellow line) has the best
performance and for the oracle θ0 (red dashed line), the Ewens
estimator has almost the identical performance. This is in
accordance with Theorem 12 (see also Remark 15), that is,
the Ewens estimator is asymptotically equivalent to the linear
shrinkage estimator ρ Im +(1−ρ)K . In our finite sample study,
we further observe that the Ewens estimator with oracle θ0
performs roughly the same as the linear shrinkage estimator
with the best ρ which is provided in the LW estimator.
However, our suggested parameter θ̂ does not seem a good
approximation. The invcovp (purple line) with optimum p
outperforms the Ewens estimator with θ̂ , but is not comparable
with the LW estimator. Directly using the sample covariance
matrix K (green dotted line) provides the worst approxima-
tion. Nevertheless, when � is the power Toeplitz matrix and
possesses some level of sparsity, the LW estimator is the best
choice. By providing a better parameter θ̂ , the Ewens estimator
might be comparable with the LW estimator.

For the long-range dependence matrix (right figure
in Figure 5), we see that the Ewens estimator (for both oracle
θ0 and estimated θ̂ ) outperforms the other estimators. Actually,
the Ewens estimator K θ̂ performs almost as good as the
oracle Kθ0 . The LW estimator is only slightly better than using
the sample covariance matrix directly. The invcovp estimator
(even with optimum p) always gives the largest errors and is
not a good estimator for the long-range dependence matrix.

C. Comments

The simulations suggest that for the true covariance matrix
with power decay Toeplitz structure, the Ewens estimator with
the oracle parameter is asymptotically as good as the LW
estimator. At present, we do not have a satisfying algorithm for
choosing the parameter θ very close to the oracle value. For
the current suggested parameter θ̂ , the LW estimator outper-
forms the Ewens estimator. However, for the true covariance
matrix that has long-range dependence structure, the Ewens
estimator always performs better than all other estimators
considered. Even our suggested parameter θ̂ is not an accurate
approximation to the oracle parameter, it has little influence
on the performance. Provided a more accurate algorithm for
choosing the parameter θ , the Ewens estimator seems a better
choice than the LW estimator since it is less sensitive to
the sparsity of the true covariance matrix. There are still
many questions to be answered: How does the operator Kθ

change the eigenvalues and eigenvectors of the original matrix
K ? Is there a better way to select the parameter for the
Ewens estimator, using the samples? Is it possible to analyze
the performance of the Ewens estimator under other loss
functions? A more comprehensive understanding on the Ewens
estimator Kθ will shed lights on analyzing the performance of
the hybrid operators Kθ,m,p and K̃θ,m,p defined in Section IV.
We did not include simulations on the performance of these
hybrid operators in this paper. However, it is an intriguing
future research question to explore how the parameters p and
θ affect the estimations.
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Fig. 5. Compare different estimators for � = Aα and � = BH .

APPENDIX A
SMALL DIMENSIONAL EXAMPLES FOR COMPUTING

E(�∗(�Dn�∗)l�)

In this appendix, we provide small dimensional examples
for computing E(�∗(�Dn�

∗)l�) using formulas derived in
Section II-C.

Let λ j = (N − j, 1 j) be the partition of N with j ones.
This one has a hook shape with N − j blocks in the row and
j + 1 blocks in the column.

For l = 1, it was shown in [20] that

E(�∗(�Dn�∗)l�) = p(np − 1)

n(n2 − 1)
Dn + p(n − p)

n(n2 − 1)
Tr(Dn)In .

For l = 2 and ρ = (1, 1, 1), (1, 2), (3) 	 3, we list all
border–strip tableaux of shape λ j and type ρ in the Table III.

Thus,

sλ0(D) = Tr(D)3

3! + Tr(D)Tr(D2)

2
+ Tr(D3)

3
,

sλ1(D) = 2
Tr(D)3

3! − Tr(D3)

3
,

sλ2(D) = Tr(D)3

3! − Tr(D)Tr(D2)

2
+ Tr(D3)

3
.

and

∂sλ0

∂di
= d2

i + Tr(D)di + Tr(D)2 + Tr(D2)

2
,

∂sλ1

∂di
= −d2

i + Tr(D)2,

∂sλ2

∂di
= d2

i − Tr(D)di + Tr(D)2 − Tr(D2)

2
.

TABLE III

BORDER–STRIP TABLEAUX OF SHAPE λ j AND TYPE ρ

Furthermore,(
E(�∗(�D�∗)2�)

)
ii

= 1

3

2∑
j=0

(−1) j (2 + p − j)!(n − j − 1)!
(2 + n − j)!(p − j − 1)!

∂sλ j (D)

∂di

= (c0 + c1 + c2)d
2
i + (c0 − c2)Tr(D)di

+ c0
Tr(D)2 + Tr(D2)

2
− c1 + c2

Tr(D)2 − Tr(D2)

2
,

where

c0 = 1

3

(2 + p)!(n − 1)!
(2 + n)!(p − 1)! , c1 = 1

3

(1 + p)!(n − 2)!
(1 + n)!(p − 2)! ,

and

c2 = 1

3

p!(n − 3)!
n!(p − 3)! .

Finally,

E

(
�∗(�D�∗)2�

)
= (c0 + c1 + c2)D2 + (c0 − c2)Tr(D)D

+
(

c0
Tr(D)2 + Tr(D2)

2
− c1Tr(D)2

+ c2
Tr(D)2 − Tr(D2)

2

)
In .
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APPENDIX B
COMPUTING E�Kθ − ��2

N F

In this section, we compute the explicit formula for
E�Kθ − ��2

N F = 1
m E�Kθ − ��2

F and express the formula
in terms of �. We assume the m-dimensional random vector
X has the normal distribution N(0,�). Let x1, . . . , xn be
n independent copies of X . Recall M = (x1, . . . , xn) and
K = M MT /n = (ai j ). Then

E�Kθ − ��2
F =

m∑
i=1

E(Kθ − �)2
ii +

∑
i �= j

E(Kθ − �)2
i j .

By Theorem 4, we first have

(Kθ − �)2
ii =

( θ − 1

θ + m − 1
aii + 1

θ + m − 1
TrK − �ii

)2

= (θ − 1)2

(θ + m − 1)2 a2
ii + 1

(θ + m − 1)2 (TrK )2

+ �2
ii + 2(θ − 1)

(θ + m − 1)2 aii TrK

− 2(θ − 1)

θ + m − 1
aii�ii − 2

θ + m − 1
�ii TrK .

Note that �ii = Eaii and ETrK = ∑m
i=1 �ii . Thus

m∑
i=1

E(Kθ − �)2
ii

= (θ − 1)2

(θ + m − 1)2

( m∑
i=1

Ea2
ii

) + mE(TrK )2

(θ + m − 1)2

+
m∑

i=1

�2
ii + 2(θ − 1)

(θ + m − 1)2 E(TrK )2

− 2(θ − 1)

θ + m − 1

m∑
i=1

�2
ii − 2

θ + m − 1
(ETrK )2.

Plugging in

E(TrK )2 =
m∑

i=1

Ea2
ii +

∑
i �= j

Eaii a j j ,

we get

m∑
i=1

E(Kθ − �)2
ii

= θ2 + m − 1

(θ + m − 1)2

( m∑
i=1

Ea2
ii

) − θ − m − 1

θ + m − 1

m∑
i=1

�2
ii

+ 2θ + m − 2

(θ + m − 1)2

∑
i �= j

Eaii a j j − 2

θ + m − 1

( m∑
i=1

�ii
)2

.

For brevity, denote β = (θ + m − 1)(θ + m − 2). Next, by the
formula obtained in Theorem 4, we get for i �= j

(Kθ − �)2
i j = 1

β2

(
(θ2 − 1)ai j + (θ − 1)a j i

+ (θ − 1)
∑

k �=i, j

(aik + akj ) +
∑
l �=k

alk − β�i j
)2

= 1

β2

(
θ(θ − 1)ai j + (θ − 1)

∑
k �=i

aik

+ (θ − 1)
∑
k �= j

a jk +
∑
l �=k

alk − β�i j
)2

.

Expanding the square above and taking the expectation over
the sum of all i �= j , one obtains
∑
i �= j

E(Kθ − �)2
i j

= 1

β2

[
θ2(θ − 1)2

∑
i �= j

Ea2
i j + 2(θ − 1)2

∑
i �= j

E(
∑
k �=i

aik)
2

+ m(m − 1)E(
∑
i �= j

ai j )
2 + β2

∑
i �= j

�2
i j

+ 4θ(θ − 1)2
∑
i �= j

∑
k �=i

Eai j aik + 2θ(θ − 1)E(
∑
i �= j

ai j )
2

− 2βθ(θ − 1)
∑
i �= j

�2
i j + 2(θ − 1)2

∑
i �= j

E(
∑
k �=i

aik)(
∑
k �= j

a jk)

+ 4(θ − 1)E
(∑

i �= j

∑
k �=i

aik
)
(
∑
l �=k

alk)

− 4β(θ − 1)
∑
i �= j

∑
k �=i

�i j �ik − 2β(
∑
l �=k

�lk)
2
]
.

We observe in the above summation that

∑
i �= j

E(
∑
k �=i

aik)
2 = (m − 1)

m∑
i=1

E(
∑
k �=i

aik)
2,

∑
i �= j

∑
k �=i

Eai j aik =
m∑

i=1

E(
∑
k �=i

aik)
2,

∑
i �= j

E(
∑
k �=i

aik)(
∑
k �= j

a jk) = E(
∑
l �=k

alk)
2 −

m∑
i=1

E(
∑
k �=i

aik)
2

and

E
(∑

i �= j

∑
k �=i

aik
)
(
∑
l �=k

alk) = (m − 1)E
( m∑

i=1

∑
k �=i

aik
)
(
∑
l �=k

alk)

= (m − 1)E(
∑
l �=k

alk)
2.

Thus, after simplification, we get
∑
i �= j

E(Kθ − �)2
i j

= 1

β2

[
θ2(θ − 1)2(

∑
i �= j

Ea2
i j )

+ 2(θ − 1)2(2θ + m − 2)

m∑
i=1

E(
∑
j �=i

ai j )
2

+ [
m(m − 1) + 2(θ − 1)(2θ + 2m − 3)

]
E(

∑
i �= j

ai j )
2

− 4β(θ − 1)

m∑
i=1

(
∑
i �= j

�i j )
2

− 2β(
∑
i �= j

�i j )
2 + (

β2 − 2βθ(θ − 1)
)∑

i �= j

�2
i j

]
.
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Finally, we get the explicit formula

E�Kθ − ��2
F (26)

= θ2 + m − 1

(θ + m − 1)2

( m∑
i=1

Ea2
ii

) − θ − m − 1

θ + m − 1

m∑
i=1

�2
ii

+ 2θ + m − 2

(θ + m − 1)2

∑
i �= j

Eaii a j j − 2

θ + m − 1

( m∑
i=1

�ii
)2

+ θ2(θ − 1)2

(θ + m − 1)2(θ + m − 2)2 (
∑
i �= j

Ea2
i j )

+ 2(θ − 1)2(2θ + m − 2)

(θ + m − 1)2(θ + m − 2)2

m∑
i=1

E(
∑
j �=i

ai j )
2

+ 2(θ − 1)(2θ + 2m − 3) + m(m − 1)

(θ + m − 1)2(θ + m − 2)2 E(
∑
i �= j

ai j )
2

− 4(θ − 1)

(θ + m − 1)(θ + m − 2)

m∑
i=1

(
∑
j �=i

�i j )
2

− 2

(θ + m − 1)(θ + m − 2)
(
∑
i �= j

�i j )
2

+
[
1 − 2θ(θ − 1)

(θ + m − 1)(θ + m − 2)

]
(
∑
i �= j

�2
i j ). (27)

Since we assume X = (X1, . . . , Xm)T ∼ N(0,�), we can
further express (26) in terms of the entries of �. We use xi

s
to denote the i th entry of the vector xs . Note that ai j =
1
n

∑n
s=1 xi

s x j
s by our definition of K . Besides, EK = �.

We also use the following facts about multivariate normal
distribution:

E(Xi )2 = �ii , E(Xi )4 = 3�2
ii , EXi X j = �i j

and

EXi Xk1 X j Xk2 = �ik1 � j k2 + �i j �k1 k2 + �ik2 � j k1

for arbitrary 1 ≤ i, j, k1, k2 ≤ m.
It is elementary to verify the following calculation.

m∑
i=1

Ea2
ii = 1

n2

m∑
i=1

[
E

n∑
s=1

(xi
s)

4 +
∑
s �=t

E(xi
s)

2
E(xi

t )
2]

= 1

n2

m∑
i=1

[
3n�2

ii + n(n − 1)�2
ii

] = n + 2

n

m∑
i=1

�2
ii

(28)

and

∑
i �= j

Eaii a j j = 1

n2

∑
i �= j

n∑
s,t=1

E(xi
s)

2(x j
t )2

= 1

n2

∑
i �= j

[
nE(Xi )2(X j )2 + n(n − 1)�ii � j j

]

=
∑
i �= j

�ii� j j + 2

n

∑
i �= j

�2
i j (29)

and
∑
i �= j

Ea2
i j = 1

n2

∑
i �= j

[
nE(Xi )2(X j )2 + n(n − 1)(EXi X j )2]

= 1

n

∑
i �= j

�ii � j j + n + 1

n

∑
i �= j

�2
i j . (30)

Similarly, we also obtain

m∑
i=1

E(
∑
j �=i

ai j )
2

= 1

n2

m∑
i=1

∑
j1, j2 �=i

(n�ii � j1 j2 + 2n�i j1 �i j2

+ n(n − 1)�i j1�i j2 )

= 1

n

m∑
i=1

∑
j1, j2 �=i

�ii � j1 j2 + n + 1

n

m∑
i=1

(
∑
j �=i

�i j )
2 (31)

and

E(
∑
i �= j

ai j )
2 = 1

n2

∑
i1 �= j1,i2 �= j2

(n�i1 j1�i2 j2 + n�i1 i2� j1 j2

+ n�i1 j2�i2 j1 + n(n − 1)�i1 j1�i2 j2)

= (
∑
i �= j

�i j )
2 + 2

n

∑
i1 �= j1,i2 �= j2

�i1 i2 � j1 j2 . (32)

Also note that

∑
i �= j

�ii � j j = (

m∑
i=1

�ii )
2 −

m∑
i=1

�2
ii .

Thus we obtain the following formula of E�Kθ − ��2
N F by

plugging (28)-(32) to (26) and dividing m on both sides:

1

m
E�Kθ − ��2

F (33)

=
[ (n + 2)(θ2 + m − 1)

n(θ + m − 1)2 − θ − m − 1

θ + m − 1
− 2θ + m − 2

(θ + m − 1)2

− θ2(θ − 1)2

n(θ + m − 1)2(θ + m − 2)2

] 1

m

m∑
i=1

�2
ii

+
[(2θ + m − 2)

(θ + m − 1)2 + θ2(θ − 1)2

n(θ + m − 1)2(θ + m − 2)2

− 2

θ + m − 1

] 1

m
(

m∑
i=1

�ii )
2

+
[2(2θ + m − 2)

n(θ + m − 1)2 + (n + 1)θ2(θ − 1)2

n(θ + m − 1)2(θ + m − 2)2

+ 1 − 2θ(θ − 1)

(θ + m − 1)(θ + m − 2)

] 1

m

∑
i �= j

�2
i j

+
[2(n + 1)(θ − 1)2(2θ + m − 2)

n(θ + m − 1)2(θ + m − 2)2

− 4(θ − 1)

(θ + m − 1)(θ + m − 2)

] 1

m

m∑
i=1

(
∑
j �=i

�i j )
2

+
[2(θ − 1)(2θ + 2m − 3) + m(m − 1)

(θ + m − 1)2(θ + m − 2)2
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− 2

(θ + m − 1)(θ + m − 2)

] 1

m
(
∑
i �= j

�i j )
2

+ 2(θ − 1)2(2θ + m − 2)

n(θ + m − 1)2(θ + m − 2)2

( 1

m

m∑
i=1

∑
j1, j2 �=i

�ii � j1 j2

)

+ 2(θ − 1)(2θ + 2m − 3) + m(m − 1)

n(θ + m − 1)2(θ + m − 2)2

· ( 2

m

∑
i1 �= j1,i2 �= j2

�i1 i2� j1 j2

)
. (34)
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